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Abstract

Accurate analysis of reliability of system requires that it accounts for all major variations in system's opera-

tion. Most reliability analyses assume that. the system configuration, success criteria, and component behavior

remain the same. However, multiple phases are natural. We present a new computationally efficient technique for

analysis of phased-mission systems where the operational states of a system can be described by combinations of

components states (such as fault trees or assertions). Moreover, individual components may be repaired, if failed,

as part. of system operation but repairs are independent of the system state. For repairable systems Markov

analysis techniques are used but they suffer from state space explosion. That limits the size of system that can

be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebra is used to

account for the effects of variable configurations, repairs, and success criteria from phase to phase. Our technique

yields exact (as opposed to approximate) results. We demonstrate our technique by means of several examples

and present numerical results to show the effects of phases and repairs on the system reliability/availability.

*This research in part was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, YA 23681.





1 Introduction

Accurate analysis of reliability of system requires that it accounts for all major variations in system's operation.

Most reliability analyses assume that the system configuration, success criteria, and component behavior remain

the same. However, multiple phases are natural. The system configuration, operational requirements for indi-

vidual components, the success criteria, and the stress on the components (and thus the failure rates) may vary

from phase to phase. Various techniques and tools have been developed [1]-[4] to analyze single mission system.

Phased-mission system analysis also has received substantial attention by researchers [5] - [12].

Depending on the requirements during different phases, different components may be placed in or removed

from service or repaired during a phase to balance the system reliability and the cost of operation. The success

of a redundancy management scheme determines if a system is operational or not. The usage of subsystems may

also vary from phase to phase and subsystem supporting those services may remain idle or may be switched

off, Furthermore. the duration of any phase may be deterministic or random. All these variations affect the

system reliability. For example, in an airplane system, landing gear and its associated control subsystems are

not required during cruising phase. So exact, analysis should not ignore such behaviors.

Sometimes the effects of individual phases may be ignored in favor of simpler analysis. For example, in case

of landing gear example, if the failure rate of landing gear is very small for all phases, counting the failure of

landing gear during entire flight may not affect result significantly. On the other hand, in another example,

in a space mission, the first phase (launch) is the most severe and uses many components for a few minutes

whose failure rates are high. Using the high failure rates and exposure time equal to the mission time for those

components is guaranteed to result into useless analysis.

In approximate analysis, most of the time only conservative estimates are made yielding the worst case

unreliability of the system. One adverse effect of this is that the systems may be over-designed. A more accurate

analysis avoids this, in particular where there may be wide variations in the parameters and system configuration

from phase to phase. If one phase experiences much more stress than others then it is necessary to account for

such effects properly. Different aspects of phased-mission analysis are discussed by several researchers [5] - [12].

A phased-mission system can be analyzed accurately using Markov methods. However that suffers from

state-space explosion and is expensive in time. In [12], the authors presented a methodology to analyze non-

repairable phased-mission systems in which failure rates, configuration and success criteria may vary from phase

to phase. Moreover, the success criteria can be specified using fault trees or an equivalent representation. A

majority of systems can be represented using fault trees. They solve the system without generating a Markov

chain. Phases are handled one at a time to compute the overall unreliability of the entire mission. This technique

is computationally less expensive. As a result, large systems can be managed.



It is possiblethat duringlongmissions,repairsarecarriedout oncomponentsor subsystemsto increase

thelifeofsystem.Forexample,in a longmannedspacemission,failedcomponentswill berepairedandmust

beappropriatelyaccountedfor in theanalysis.Theformof repairmayvary.Forexample,asystemmaybe
completelyreplacedbyanothernewsystemoronlymaintenancechecksmaybecarriedoutandsubsystemsare

repairedin theconventionalsense.Markovanalysistechniquescanbeusedbut,asstatedearlier,mayrequireto

managehugestatespaceandcomputationtime.Weextendthemethodologyof [12]in thispapersignificantlyby

includingrepairsof independentcomponents.Werequirethat thesystemsuccesscriteriaisdependentonlyon
thestateof individualcomponentandaslongasthesuccesscriteriaissatisfied,thephaseremainsoperational.

Theresultsof thispaperallowsanalysisoflargesystemswith componentrepairsefficiently.In thedescriptions

below,wewill assumethat a readeris generallyfamiliarwith Markovchain-basedanalysis.Wewill useit to

describecertainsituationsbutwillproposeamethodologywhichdoesnotexplicitlygeneratethestatespace.

In all of thiswork,phasetransitionsareassumedto beinstantaneousandnolossor gainisassumedin the

probabilityofanyparticularstatein Markovchain.However,dueto changeinsuccesscriteria,someoperational
statesmaybeseenasfailurestatesin thenextphaseandaretreatedaslatentfailuresforanalysis.Forexample,

if the landinggeardevelopsaproblemduringcruising,theflightwill continuein airbut thelastphase,landing,

maynot be successful. Thus the landing gear failure is latent. If the failed landing gear can be repaired during

the flight, then the effect can be accounted for in the analysis.

We present some related work in the next section. Then we describe some concepts which we will use

throughout the paper. Following that we present handling of repairable systems and our methodology to manage

computation efficiently. We present a few examples and demonstrate the effectiveness of our work. In all cases,

the results are compared with EHARP [10] results which compute unreliability of phased mission system correctly

as it follows state-to-state mapping from phase to phase.

2 Related Work

Esary and Ziehms [5] discuss analysis of multiple configuration systems during different phases of a mission

using reliability block diagram (RBD). For phase p, each component is represented by a series of a blocks, one

corresponding to each phase starting with phase 1 to phase p. All phase RBDs are connected in series and

solution of this RBD correctly predicts the reliability of the three phase system. This results in a large RBD and

failure of components cannot be accounted for. Pedar and Sarma [6] enhanced this technique to systematically

cancel out the common events in earlier phases which are accounted for in later phases in the RBDs. We will user

Esary and Ziehms's representation for components in various phases for analysis but perform the computation

differently.



alamandAI-Saggaf[7]useMarkovchainandSmothermanet. al. [9]useanon-homogeneousMarkovmodel

to includephasechangesin themodel.TheMarkovchainin bothcasescanbeveryhuge.It shouldbepointed

out thatthe lattertechniqueallowsthemostaccurateanalysisif phasechanges are not smooth. However, this

requires large amount of storage and computation time to solve a system, thus limiting the type of system that

can be analyzed. Somani et. al. [10] presented a computationally efficient method to analyze multi-phased

systems and a new software tool for reliability analyses of such systems. A system with variable configuration

and success criteria results in different Markov chains for different phases. Instead of generating and solving

an overall Markov chain, they advocate generating and solving separate Markov chains for individual phases.

The variation in success criteria and change in system configuration from phase to phase are accommodated by

providing an efficient mapping procedure at the transition time from one phase to another. While analyzing a

phase, only the states relevant to that. phase, are considered. Thus each individual Markov chain is much smaller.

Using a similar approach, Dugan [8] suggested another method in which a single Markov chain with state

space equal to the union of the state spaces of the individual phases is generated. The transitions rates are

parameterized with phase numbers and the Markov chain is solved p times for p phases. However, the failure

criteria is also the union of all phases failure criteria as any failed state in any phase is considered failed state for

the whole system. Thus, the scheme is only applicable is the success criteria does not change over the phases.

3 Distribution Functions with Mass at Origin

As in [12], we will use the concept of cumulative distribution functions with a mass at. the origin in our work.

Consider a random variable X with cumulative distribution function given by

Fx(t) = (1 - e -_T1) + e-_Tl(1 -- e-_t).

This function has a mass at the origin given by P(X = 0) = (1 - e -_T') . The second term represents the

continuous part of the distribution function.

In order to illustrate the use of such a CDF, consider a component with a constant failure rate of A that

is used in a phased mission system. Assume that the system has just completed one phase of duration T1 and

is currently in the second phase. The above CDF can be assigned as the failure probability distribution of

the component in the second phase. The first term in the above expression represents the probability that the

component has already failed in the first phase. The second term represents the failure probability distribution

for this component for the second phase. The time origin for the second phase is reinitialized to the beginning

of the phase. We will use such distribution functions to represent failure probabilities of individual components

during different phases.



3.1 Component Model with Repairs

The model described above can be extended to include repair for a component. Let X be a component whose

failure and repair rates in phase p are denoted by Ax; and Pxv, respectively. Failure and repair times are

assumed to follow exponential distribution. We define

axv(t) = e -(_xP+"x')*t and_xv = _ (1)
_xp+Axp

where t is the time after the system entered the phase p. We can compute probabilities of component X being

operational (up) or not-operational (failed) by solving a two state Markov chain for the component. At the

beginning of a phase a component may be in an operational or failed state. With either of the initial states, the

component may be operational or failed at the end of the phase due to failure and repairs involved during that

phase. To compute the probabilities for a component to be operational or failed at the end of the phase, we need

to compute the probabilities of all the four possible cases.

We will follow a 4 character suffix with probabilities. The first character is the name of the component (i.e.

X, Y). The second character is u for up or f for failed and is associated with the starting state of that component

in a phase. The third character is u or f as earlier. It can also be e if it refers to probability at the end of a phase

or a b if it refers to the probability at the beginning of a phase. The fourth character p is for phase number. The

first and the fourth characters will change with components or phase number we are dealing with. If it is given

that the component X is up, then the probabilities that it will remain up or failed after time t has elapsed in

phase p are given by

px..v(O = _xp(t) + _xv * (1 - _xv(t)) (2)

and

Pxu/v = (1 - axv(t)) * (1 - _xp). (3)

Similarly if it is given that component X is failed, then the probabilities that it will remain up or failed are given

by

Pxf,v --_xv * (1 - axv(t)) (4)

and

vxHv = 1 - 3xp * (1 - axv(t)). (5)

If the probabilities that. component X is initially up and failed at the beginning of the phase p are Px,bp and

Px:bv, respectively, then the probabilities that the component is up or failed after time t has elapsed in phase p

are given by

Px.,v(t) = pxubv *px._v(t) + px :b; * px :_v(t) (6)



and

Pxfep(t) = pxu@ * pxufp(t) A- pxf@ * Pxflp(t) • (7)

The overall operational and failed state probabilities for a component can be evaluated at the end of phase p by

substituting t = Tp in the the above expressions. They include the mass at the origin (the initial up or failed state

probabilities). Tp is the duration of phase p. For example, suppose for a component X in phase 1, if/ix1 = 9.$x1,

TI = 10 hrs, and Pxl and Ax1 are chosen so that aXl(10) = 0.9. ,3xa = 0.9. Then, Px,,_,I = 0.99, Px,_fl = 0.01,

pxf_,x = 0.09, and pxffl = 0.91. If Px_,bl = 1.0 and pxfbl = 0.0, then px,_el = 0.99 and Pxf_1 = 021.

If, on the other hand, Px,,bt = 0.99 and PX/bl = 0.01, then Pxuel = 0.99.0.99 + 0.01 * 0.09 = 0.981 and

Pxf_L = 0.99.0.01+ 0.01,0.91 = 0.019.

4 Phased-Mission and Component Repairs

In analysis of reliable system when a system enters a failure state during a phase, the entire mission is considered

to have failed. So the next phase only begins, if the system remains operational during all previous phases. If the

components are not repaired, the success or failure of system depends on the cumulative operational probabilities

and success criteria defined by the combinations of states of operational components. In such cases, as shown in

[10]-[12], one can compute the success probability of the whole mission.

Notice that a system state may be considered as a failed state in phase p but may be a success state in the

next phase due to a less stringent success criteria. This is acceptable behavior even in reliable systems. In such

cases, all state occupation probabilities (SOPs) accumulated in such states up to only phase p are considered

to be contributing towards failure of mission. Thereafter they are considered as part of success. This is key to

correct analysis of a phased-mission system and is implemented in EHARP.

In certain situations, however, it is possible to design systems that include repairs to keep reliability high.

For example, in a long mision, to improve reliability and performance, it may be advisable and necessary to

carry out repairs on system during operation of system. Since in different phases success criterias vary, all of the

components may not be used in all phases. When certain components are not required for the system operation,

they may be repaired and employed again in the following phases. The repairs are to remain in ready state for

future phases. In phases when repairs are carried out, the system status is not affected by the components under

repairs. In Markov chain representation this implies that the repair transitions are from failed states to failed

states or operation states to operation status. In such cases, we can compute reliability more efficiently using

the approach of this paper.

For example consider two components, A and B, system which are used alternately in two consecutive phases.



Bothcomponentscanfail ineitherphasebutonlythecomponentnot in usein aphaseonlyundergoesrepairs

in that phase.Thesystemoperationalandfailedstatesforthetwophasesareshownin Figure1.

(a)Atwounitsystem

A B
BisrepairedAisrepaired

Phase1

Phase2

Figure1:A twocomponentsystemandits failedstates

In a repairablesystem,it isalsopossiblethat thesystemmayenterfroma failedstateto asuccessstate

withinthesamephase.Sincethesuccesscriteriaisspecifiedusingcombinatorialmethods,thiswillhappenif the

systemupor failedstatedependsonacomponentwhichisalsobeingrepairedin thatphase.In suchcases,use
ofcombinatorialmethodsonlywillnotallowusto payusattentionto thefactthesystemmaytransitthrough

thefailedstates.Oneimportantconsiderationhereis thatmustsuchtransitionsbeallowedin thesamephase?

Strictlyspeaking,forcriticaloperationsystem,onceasystemfailurehasoccurred,it is catastrophicandmust
betreatedassuch.Thisis,therefore,obviouslynotallowedforreliablesystemastheyareconsideredfailedonce

thesystementersafailedstate.In that case,thetechniqueof thispapercannotbeappliedasthesystemdoes

notremainsymmetric.Suchsystemscanonlybesolvedusingthetechniquesdescribedin [7,9,10]andthetools

suchasEHARP.

Therearemanyotherscenarioswherethetechniquesdevelopedin thispaperwillapply.In thispaperweare

assumingthatcomponentrepairsareindependentofsystemstatesandarecarriedoutbasedonthecomponent

statesonly,thesuccesscriteriamaybesuchthat thisdoesnot impacttheresults.If onlythosecomponents

arerepairedthat arenotparticipatingin theoperationof a systemin that phasethen thesuccesscriteria

automaticallysatisfiestherequirementfor correctanalysis.Thisis thecasein theexampleof Figure1.Thisis

becausetheupor failedstateofsuchcomponentswouldnotaffecttheanalysisastheydonotaffectthesuccess

criteria.Alternatively,if theapproachforsuccessis that "alliswellif theendiswell,"thenalsothisanalysiscan

beused.Whatwemeanbythis is thatif it is thesystemstateat theendofa phasethat countsandtransient

statesduringtheoperationdonotmatter(ordonotmatter"much"),thenthistechniquecanbeused.



Anotherquestionthat arisesis that canonestart the nextphaseor not in a statewherethesystemis

consideredfailed.Forreliabilityanalysis,theobviousanswerisnoasthesystemhasalreadyfailed.But insome
analysis,likeperformabilityor availability,thisisobviouslyacceptable.Thushandlingofsuchstatesdependson

thesystemdefinition.This isopen to interpretation. For availability and performability analysis, if a particular

phase may fail in a particular combination, that combination may be considered further as the system may

recover from it due to repairs. In such cases, it is possible, that the next phase can begin, even if the system is

in a failed state since it is possible that the system is brought back up in an operational state. So, in essence we

may be more interested in the availability of a system during a particular phases and not reliability according

to definition of reliability. The availability then can be used to compute the performability of the system. This

analysis is beyond the scope of this paper and is subject of our further research.

4.1 Examples Used in the Paper

To describe and show the effectiveness of the work here, we will use the following three examples.

Example 1. Our first example is the the one described earlier of a two components A and B. system that

can be represented using four states in a Markov chain as shown in Figure 1. One component is repaired while

the other is used for the system operation. Thus failure and success of system depends on the component being

used. This may correspond to a factory floor where two machines are alternately used while other goes through

its repair (or maintenance) cycle and is repaired as needed to bring it up to the fully operational state. We will

consider a four phased system with different parameters and phase durations.

Example 2. The second example is of a slightly bigger system where we have more scope to show changes

in system configuration that lead to system failure and success and finer points of the complexity involved in

analysis. This system consists of three component, A, B, and C. One of these components may be repaired in

a phase while the other two are used in a phase in some combinations. The system remains operational as long

as the specified success criteria is satisfied. The success criteria for each of the three phases is expressed using

fault trees. Each time we use two components and depending on the requirements we may require both or any

one of them operational. The failure rates of three components are An, Ab, and Ac, respectively, and these are

defined for each phase separately. The repair rates for these parameters are/_a, /_b, and #,, respectively. Two

particular configuration using two out of the three component are shown in Figure 2a.

A Markov chain for a three component system with all repair arcs is also shown in Figure 2b. In the Markov

chain representation, a 3-tuple represents a state indicating the status of the three components respectively. A

"1" represents that the corresponding component is alive and a "0" represent that the component has failed. For
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(a) A three unit system

X Y X Y

CONFIGURATION I CONFIGURATION 2

(a)

Markov Chain for a three component system with repairs

(b/

Figure 2: (a) Two configuration of a three component system and (b) the Markov chain with all failure and

repair arcs.

example, a state (101) implies that component B has failed and the other two components are alive. A transition

from one state to another state has a rate associated with it which is the failure rate of the component that fails

or repair rate of the component that is repaired. For example, a transition from state (011) to state (010) has a

transition rate of Ac. States marked F are failure states. Similarly, a transition from state (010) to state (011)

has a transition rate of pc-

Depending on success criteria and system parameters, only some of these states will be success states in each

phase. Some of the arcs may have 0 rate associated with them or they may not exist. For example, if a repair

is not active, the corresponding arc may be dropped. We will use several combination of two possible success

criterias in a three phase system. In each of these cases, one of the components will not be used in each phase

and will be repaired. The component parameters and phase duration may vary.

X Y Z X Y Z X Y Z

CONFIGURATION 1 CONFIGURATION 2 CONFIGURATION 3

Figure 3: (a) Three configuration of a three component system.

Example 3. For our third example, we will use "all is well if the end is well approach." We will use the

same three component system of Example 2 but will use all three components in each phase. The three phase

configurations to be used are shown in Figure 3. The components are also repaired in each phase. As long as a



phaseterminatessatisfyingthesuccesscriteria.Wewillcomparetheresultswiththecasewhenrepairarcsare
notallowedfromthefailedstate(analysisperformedusingEHARP)andto noticetheinaccuraciesincurredin

computation.

5 Phased-Mission Analysis

Suppose we are given the failure, and repair rates for each component for each phase and the success criteria

for each phase. The component failure and repair rates may be phase dependent. We assume that the phase

durations are deterministic.

To account for phase-dependent failure and repair rates, we use the component model for failure and success

distribution with mass at origin for each component as described in Section 3.1. We compute the distribution of

failure for each component for each phase using the initial (beginning of that phase) up and failed probabilities

and failure and repair rates for that phase. The failure distribution function is described in Equation 7. In there,

time t is measured from the beginning of phase p so that 0 < t < Tp. Tr represents the duration of phase p. This

expression is in recursive form and can be further simplified by substituting Pxubp = Pxue(p-1)(Tp-1) (the final

values for phase p - 1 as the initial values for phase p). But we prefer to leave the expressions for each phase

as they are in the recursive form as we need individual phase components in our computation to combine the

results for all phases together.

Notice that a component may be up or failed in any phase with the distributions described in Equations 6

and 7 irrespective of its status in the previous phase due to failure and repairs of that component in that phase.

This is in contrast, to non-repairable system where a component can be up only if it is up at the beginning of

the phase.

If the failure and repair rates are age-dependent, then one would have to consider time as a global parameters,

---- Z/=I T/ and finishes ati.e., time starts with the beginning of a mission and phase p starts at time CTp-1 v-i

CTp ._ ZT=I 7]. The probabilities P_:uup, P:c,JSp, Px.tup, and P_:.tlp are calculated using a single component

model where both failure and repair rates are function of time. The resulting component behavior is represented

using a more complicated non-homogeneous Markov chain for which appropriate differential equations can be

easily developed. However, solution of these equations does not have a closed form solution for general /t(t)

and A(t) [14]. In specific cases when pxp(t) = 0 and only failure rate Axv(t) is a function of time, we can

computer.s. 0.0 1= = = - - and PXuup m e - The rest of

the computation remains the same.



5.1 Management of Phase-Dependent Success Criteria

The success criteria in different phases may be different for a variety of reasons including (i) not all components

are used in all phases, (ii) the expected performance out of individual components may be different, in different

phases, (iii) individual subsystems may be dropped or included in the system. (iv) the dropped (not used)

subsystem may be repaired, and (v) additional redundancy may be provided or redundancy levels may be

reduced for certain tasks.

Due to a change in success criteria and repairs, it is possible that some combination of failures of components

in one phase leads to failure of the system whereas the same combination does not lead to failure in some other

phase. The following five scenarios arise in computation at the time of phase transition from phase p to phase

p + 1. The first four of these are the same as described in [12] for non-repairable system.

1. A combination of component failures does not lead to system failure in both phases p and p + 1.

2. A combination of component failures leads to system failure in both phases p and p + 1.

3. A combination of component failures does not lead to system failure in phase p but leads to system failure

in phase p + 1.

4. A combination of component failures leads to system failure in phase p but not in phase p + 1.

5. Due to repair the system in a failed state may transit back to a up state.

The mechanism to compute unreliability of a system at time t, whose behavior is described using fault trees

for different phases, is to compute the probabilities of all events at time t and then evaluate the fault tree using

those event probabilities. The events here are whether components are up or failed. We already have described

mechanism to compute the event probabilities at time t in Section 3.1. Using that we can evaluate the fault tree

applicable at time t.

The first three cases listed above directly contributes towards unreliability or reliability and are taken care

appropriately by a fault tree evaluation. Fault tree for a phase include failure combinations which remain

common in all phases and those combinations which are considers as success earlier but are treated as failure

in the current phase. Such combinations can be treated as failure combinations over all phases as the system

eventually fails in phase where this combination leads to system failure. These are referred to as latent failures

in [11]. Hence applying the failure criteria of the current phases to previous phases is correct and appropriate.

The unreliability can be evaluated by evaluating the fault tree for current phase.

However, in order to compute correct unreliability, we must compute the probability of the system being in

failed state in any phase. The fault tree evaluation for the current phase does not include the last two cases.

10



If asystemstateisa failedstateup to phasep and then, it is a up state, the probability accumulated in that

state up to the end of phase p must be counted towards unreliability. Such failure combinations can be identified

using phase algebra as described in [12].

The only additional complication now is due to repairs as listed in case 5. We need to identi_" the probability

that is once associated with a failed state in a previous phase but now is been associated with a success state.

A straightforward evaluation of fault tree associates such probabilities with success states that get counted as

reliability. We need to identify probabilities. This can be done by extending the phase algebra.

Notice that even if the success criteria remains, the last scenario must still be analyzed and accounted for.

Also notice that in most cases, we assume that the components being repaired are those which are not being

required for system operation in that phase. Therefore, the success criteria will not remain same over all phases.

In a Markov chain-based analysis, it is easier to keep track of the system states, and therefore, change in

system success criteria could be easily accounted for. However, in the case of a fault tree, this change needs to

be accounted for by considering those combinations when the system may" or may not fail at the time of a phase

transition.

Thus, our methodology consists of the following steps. We divide the system unreliability of a phased mission

system into three parts: (i) common failure combinations; (ii) phase failure combinations, and (iii) repair to

success combinations. Common failure combinations are specified by the fault tree description of the current

phase. Phase failure combinations and repair to success combinations are identified using the phase algebra.

These includes all those factors which describe failure in previous phases but are not considered as failure now

or those flows which occurred from failed combinations to success combinations.

5.2 Phase Failure and Repair to Success Combinations

To determine phase failure and repair to success combinations for a phase p in a P phase system, we use the

following procedure. Let Ep be the Boolean logic expression specifying the failure combinations for phase p.

Then phase failure combinations which are treated as success combinations for all the subsequent phases and

repair to success combinations for phase p, combinely denoted as (PFCp), are given by

PFCp = (.. .((Ep A Ep+l) A Ei+2)" " A Ep).

In the above expression, we include only those combinations which are failure combinations in phase p but are

not failure combinations in an)' of the subsequent phases. This expression can be simplified as

PFC_ = Ep A (Ep+, V--.V Ep).

The form of the expression are the same as that is given in [12]. Reader who is familiar with the work in

11



[12]shouldbecarefulwhilereadingthesectionasthereareafewdifferencesforthealgebraherefromtheone

describedin [12].Therulesfor manipulatingexpressionaredifferentto accountfor repairs.In fact,theyare
sameasapplicablefor Booleanalgebraandthespecialtreatmentfor non-repairablesystemsasin [12]isnot.

requiredanymore.Also,thecomputationofprobabilityrequiresfurtherattention.

5.3 Phase Algebra

Let Y = 1 mean that component X has failed. Then z = 0 implies that component X has failed and x = 1

means that component X is operational. Using this notation, for the system described in Figure 1, there is only

one possible configuration but the component used in a phase changes from phase to phase. Thus, the following

Boolean expression describe the failure for any phase. Also, the component not being used in a phase is assumed

to be repaired.

SE(X) =

Similarly, for the system described in Figure 2 the following Boolean expressions describe the failure combi-

nations for phases using OR or A'VD configurations.

ORE(X, Y) : _ +

ANDE(X, Y) = x y

Notice that X and Y are only parameters here and will be replaced by A, B, or C depending on the use

of components. It should also be noted that event _ denotes the failure of component X in that phase only.

Thus for each phase, we need to define a separate symbol for each component. This is very similar to Esary

and Ziehms notation where they have a separate symbol denoting failure of a component in each phase. Let

xv = 1 denote the event that component X is operational during phase p. This is irrespective of the status of

that component in any previous phase. With this addition, the Boolean expression for phase p for system 1 is

given by the following.

SEAX ) =

Similarly, the expressions for system 2 become

OREAX, Y) = +

and

ANDEv(X, Y) = xv Yv

respectively.
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Usingtheabovetwophases,it ispossiblethatasystemmaybehaveAND configuration in phase p followed

by AND or OR configuration in phase p+l or OR configuration in phase p followed by AND or OR configuration

in phase p + 1. The four possible combinations PFCs for phase p assuming that phase p + 1 is the last phase,

components X and Y are used in phase p, and components Y and Z are used in phase p+ 1 are given in Equation

,

PFCAND(X, Y)vOR(Y, Z)p+l

P FCAN D(X, Y)vAN D(Y, Z)v+ I

PFCOR(X, Y)vOR(Y', Z)v+I

PFCOR(X, Y)vAN D(Y, Z)v+I

= (_ _)(y-?--47+ VT)

= (G N)(up+l zp+l)

= (_ + N)(yT-;-; + V-iT)

= (_ + N)(u-i-;7 _747)

= (N N)(ur+l zp+l)

= (N N)(up+1 + =p+l)

_--(_ 'J- _-p)(yp-_-iZ-p-t-l)

= (_v + _)(uv+_ + zv+_)

(8)

When the expression for PFCp is simplified, regular Boolean algebra rules can be applied. For this purpose,

if p and q are two phases, then xe and Xq must be treated as separate variables. The normal Boolean algebra

rules such as xp xp -- xp, xr xv -- xv, x r xp -- O, and their dual apply. Any product terms involving xr or xq

or their complements must be retained as it.

An expression such as xp_-q means that component X is operational at the end of phase p but fails by the

time phase q is finished. Oil the other hand, an expression like _-_ Xq implies that component X is failed at the

end of phase p but. is operational at the end of phase q due to repair carried out during the process. Thus, if

p = q - 1 (two consecutive phases), then probability P(xp_T) is given by Px_bpPx_fq and probability P(_Txq)

is given by PxfbvPxfuq. Other combinations are evaluated in a similar fashion. If no repair is carried out then

Pxs<,q = 0.0.

5.4 System Unreliability

Using the phase success criterias for different phases and phase algebra we compute the system unreliability as

follows. For a P phase system, we first, compute the PFCp's for all phases assuming P as the last phase. Then

the system unreliability is given by
P-1

UR = P(Ep) + E P(PFCp)
p=l

where P(Ep) is the probability of failure evaluated using the fault tree Ep of phase P (the last phase) and the

failure distribution function calculated for each component as described in Section 3. P(PFCp) is the probability

of phase failure combinations for phase p.

Interpretation of Boolean Expressions While computing probabilities of PFC/s, derived above, we may

encounter expressions like xlx_x4xs. What it means is that we are looking for probability of a combination of

events where Component X remains operational up to the end of phase 1, fails by the time phase 2 ends, but is

13



operationalagainbytheendofphase4,andthenfailsbythetimephase5finishes.Thefollowingtreeisuseful

inexplaininghowto computetheprobabilityof thiscombinationofeventsforcomponentX.

l

2

3

4

5
U D U D U D U D U D U D U D U D

Figure 4: A component up/fail tree over multiple phases

In the tree if we assume that the root at level 1 is representing an event that component X is up at the end

of phase 1 (there is certain probability associated with it), then the left child (at level 2) is representing that

it is up at the end of phase 2 and the right, child (at level 2) is representing that it is failed. We can compute

the probabilities of these events using expressions for Pxuu2 and Pxuy2 from phase 2 parameters. Similar

interpretation exists for children of level 2 nodes from phase 2 to phase 3 as the component state changes. To

go from Component X has failed at the end of phase 2 to the state that it is operational at the end of phase 4,

there are two routes, i.e., _-_ -- x--5-- x4 and _-_ -- x3 -" x4. We need to compute the probabilities of both paths

and then add them up to arrive at the probability of combination _-_x4.

We may encounter any combination of such events for a component but it should be obvious that such

computations are required to be done for each component and not for system states. For a component, if there

are p phases, then there at most 2p+I values which we need to store. In an N component system, this amounts

to N2 p+I values. On the other hand in a system with N components, there could be up to 2N states and we

have to analyze them for p phases. So we may be storing up to p2 N states combination. Normally, N >> p (will

not. be the case for examples in the paper for the obvious reasons). Thus the technique here is computationally

much more efficient, then generating a state space and computing state occupation probabilities for those states

for each phase given a distribution from a previous phase operation.
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5.5 Computing Transient Behavior

In the previous section, we outlined the mechanism to compute unreliability at the end of a mission, that is, the

end of the last phase. Sometime one may be interested in computing the unreliability behavior during all phases.

This means we need to compute unreliability for each phase as a function of time. It turns out that this is not

expensive and can be easily accommodated in our methodology as the PFCs calculation is recursive.

Recall that PFCs for a phase are computed as

PFCp = Ep A (Ep+l V... V Ep).

Also, the unreliability at the end of a mission is computed using the expression

P-1

UR = P(Ep)+ __, P(PFCp).
p=l

In a P phase system, we define PFCp = Ep then the unreliability for a P phase system can be written as

P

UR = E P(PFCp).
p=1

Thus. to compute unreliability at the end of phase p, we need PFC1, PFC2, ..., PFCp where the PFCs must

be calculated using phase p as the last phase. We define PFCi,p as the PFC of phase i, i < p, assuming phase

p as the last, phase. Then the following relation holds.

PFCi,p = PFCi,p-1 A Ep

The unreliability of the pth phase is computed by using the following relation.

P

UR_ = Z P(PFCi,p)
i=1

and the PFCi,p can be computed recursively using the results of PFCi,p-1 and Ep. With this recursive relation,

one may compute reliability of phase p using the result of phase p - 1.

5.6 Latent Failures

It should also be noticed that at the transition of a phase, one may see a upwards change in unreliability value at

the phase transition time. This happens if the next phase has different success criteria than the current phase.

In that case it is possible that that some of the success states in phase i may be failed states in phase i + 1. We

define them as latent, failures as the system may fail as soon as the phase change occurs. For example, in an

automobile system, on a freeway we may be cruising at a fixed speed and we may not need the brake subsystem
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in acar.But assoonaswehit acity limit, aphasechangeoccursandif thebrakesarenotfully functional,we

arelikelytohit someothervehicle.Tocomputeunreliabilityincreasedueto phasechangefromphasei to phase

i + 1, we compute URi. Then, we compute URi+ which is just after the end of phase i and beginning of phase

i+ 1. For this purpose, we modi_" the success criteria and it is now a logical sum of the success criterias of phases

i and i + 1 evaluated at the end of phase i using parameters of phase i. We define this as Li = Ei + Ei+l with

Ei+l specified using component status at the end of phase i. PFCs also need to be reevaluated as Li instead of

Ei for the phase i (for earlier phases, we will still use E r and not Lp for p < i).

We will demonstrate our methodology using the examples described above in the following section.

5.7 Example Computations

In the first example, we use the two component system with four phases. In the first phase, we require component

A for operation (and therefore there is no repair on it, see discussion above in Section 4). Component B has

associated with it both failure and repair rates. Then we alternate between the use of component and repair.

Thus the success criterias for four phases are specified by

n

E1 = SEI(A) = if-{; E2 = SE2(B) = b_; E3 = SE3(A) = -_3; E4 = SE4(B) = b4. (9)

Using the above information, at the phase changes from p to p + 1, there could be latent failure (they are

in this system) and to evaluate unreliability including phase change boundary, we will use Li instead of Ei as

discussed above. The success criteria with latent failures is given by

m

LI = SEI(A)+ SEI(B) = _-+b-7; L2 = SE2(B)+ SE_(A) = b-_+_; L3 = SE3(A)+ SE3(B) = _-5+b3. (I0)

We assume that there is no phase change after phase 4. Using this information we can compute PFCs as follows.

PFC12 = (El • E2) = -ff-_b_

PFC13 = (PFC12" E3) = "ff'fb2a3

PFC_3 = (E2 • E3) = b2a3

PFC14 = (PFC13- E4) = _'fb2a3b4

PFC24 = (PFC23" E4) = b2a364

PFC34 = (E3 " E4) = "ff_3b4

(11)

Now to compute, latent PFCs (that is including latent failures at the phase transition points), we use the

same expressions except that we need to Li instead of Ei and obtained the following LPFCs. Notice that in the

recursive function, we continue to use PFC and Li is only used for the current last phase.
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Table1:
State BP1

Factor 1.000

11 1.000

10 0.000

10 0.000

O0 0.000

UR 0.000

State Probabilities and Unreliabilities for a tw_

EP1 BP2 EP2 BP3 EP3

1.000 1.000 0.891 0.891 0.8912

0.891 0.891 0.891 0.891 0.891

0.009 0.000 0.099 0.000 0.009

0.099 0.000 0.009 0.000 0.099

0.001 0.000 0.001 0.000 0.001

0.100 0.109 .1981 .206119 0.2855071

component system

BP4 EP4

0.891 -_ 0.8913

0.891 0.891

0.000 0.O99

0.000 0.009

0.000 0.001

0.29265203 0.36338683

m

LPFC12 : (El • L2) : "5"{a2b2

LPFC13 = (PFC12. L3) = "fffb2a3b3 (12)

LPFC23 = (E_ - L3) = b2a3b3

Then the unreliability at the end of phase p and at the beginning of phase p + 1 is given by the following

expressions.

p-1

URp = Y'_i=l P(PFCi,p) + P(Ep) (13)
p-1

LURp = _-_4=1 P(LPFCi,p) + P(Lp)

We computed numerical results using above expressions and parameters values which are easy to yetiS, by

hand computation. We first used phase durations for each phase as 10 hours and value of failure and repair rates

for both components in such a way that the factor _ at phase duration of 10 hours is equal to 0.9. Also, if repair

is applicable, then parameter 3 in all phases for applicable components is also 0.9. Using, these parameter values,

we get the results shown in Table 1. Here BP and EP stands for beginning of phase and end of phase and we are

tabulating SOP for each state, reliability, and unreliability and we have a multiplication factor associated with

all column entries. Idea is to be able to clearly see that the results are correct. The results are obtained using

SHARPE [2] program where PFC expressions were hand coded, EHARP [10], and hand calculations, the results

match in all cases to 9 significant digits. The multiplication factor only applies to SOPs and the unreliability

values are as they are listed.

To give a better idea appreciation for results and match the results of this table to that obtained using

Markov chain analysis, the Markov chains and the initial state occupation probabilities for four phases are

shown in Figure 5. Any state occupation probability not shown is zero (that is the case for three states out of

four in every phase}. Two of the states are failure states in each phase. One of the remaining two states becomes

a latent failure state. Thus only one state is operational state at the beginning of each phase.
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Phase1

Phase3

Phase2

Phase4

Figure5: MarkovChainsforfourphaseswithinitialSOPs

Table2: Unreliabilitiesfora twocom

2 (×10-4)

}onentsystem(variableparameters)
Case EP1 BP2 EP2 BP3 EP3 BP4 EP4

1 (x10 -4) 0.99995000 1.63198093 2.63176774 3.26369553 4.26331917 4.89514383 5.89460434

0.99995000 1.99980001 2.99955004 3.99920011 4.99875021 5.99820036 6.99755057

3 ( x 10 -3) 0.99950016

0.99950016

1.09938570

1.99800133

2.09778703

2.995504504 ( x 10 -3)

2.19756275

3.99201066

3.19486645

4.98752081

3.29453247

5.98203595

4.29073975

6.97555707

5 (×10 -4) 0.99995000 1.06315547 2.06299916 2.12619791 3.12593531 3.18912734 4.18875844

6 (×10 -4 ) 0.99995000 1.09993950 2.09977952 2.19975802 3.19948805 3.29945556 4.29907563

0.99950016 1.00948962 2.00798080 2.01796017 3.01544338 3.02541268 4.021888947 (× lO-3)

8 (xlO -3) 0.99950016 1.09939522 2.09779654 2.19758177 3.19488546 3.29456098 4.29076824

Next we used other data to compute the results. In all cases the repair rate if applicable remains to be

0.100/hour. In the first four cases, we use failure rate of each component irrespective of usage as 0.00001/hour.

In the last four cases, we use failure rates of used components as 0.00001/hour while those under repair as

0.000001/hour. The phase durations for cases 1, 2, 5, and 6 are 10 hours while in other four cases, 3, 4, 7, and

8, are 100 hours. In even number cases, the analysis is done by ignoring repairs while odd cases include repairs.

Table 2 contain the results obtained in all cases.

First notice the multiplication factors for each row. A factor of 10 difference is there due to the mission

(phase) times. Next, when we ignore repairs, we notice a substantial change in unreliability values obtained in

the first four cases when the failure rates are the same whether a component is being repaired or not. Thus

repairs must be accounted for in such cases. More interesting results are obtained when the components being

repaired have an order of magnitude smaller failure rates (cases 5-8). In these cases, ignoring repairs impacts the
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resultsbut in thisexamplethedifferenceisnotsubstantial.Soonemaychooseonevsanotheranalysisbased
onparametervalues.

Example2. Forexample2, we consider the three components, A B, and C, system with two phase config-

urations AND and OR and three phases. In each phase one component is not used. Suppose component A is

not used in pha_se l, component B is not used in phase 2, and component. C is not used in phase 3. There are

eight, possible combinations (AND or OR in each phase). We will not write expressions for PFCs and LPFCs

for all cases here. But to demonstrate how to derive them, for one case when Phase 1 is OR(B. C) phase 2 is

AND(C, A) and phase 3 is AND(A, B). Then

PFC1,_ = PFCOR(B, C)IAND(C, A)2 = (bl + N-1)(c2 + a2)

and

PFC23 = PFCAND(C, A)2AND(A, B)3 = (_ h--{)(a3 + b3)

as computed in Equation 8. We can also compute PFCla using the recurrence relation to obtain

-- m

PFC13 = PFC12E3 = (bl + _-i'1)(c2+ a2)(a3 + b3).

To compute the probabilities of these expressions, we need to expand the expression in mutually exclusive

terms. It should be noted that when expressions are in product of expressions form each product expression can

be independently expanded into mutually exclusive terms. Then a product expansion will give all terms which

are mutually exclusive. So using this, we compute probabilities of PFCs as given below for this case.

P(PFCI_) = P((bl + _)(c2 + a2) = P((bl + bl_-'_l)(a2 +'5_c2))

= P(a2bl) + P(g'_2blc2) + P(a2bl"5-{1 + P(a_bl-dTlC2)

P(PFC13) = P((bl + _--[)(c_ + a_)(aa + b3)) = (bl + bl-d'_)(a2 + -_,.e_.)(a3 + 5"_353)

= P(a2a3b_) + P(a2a3bl_l) + P(a,,-_blb3)+ P(a_5_blb3g-[) (14)

= +P('5"_2aablc_) + P(g_a3bl_lC:) + P(a,_-'_3blb3c,.) + P(a_--2-_blbag-_c2)

PFC23 = P((_)(a3 + b3) = a_-aS-eT(a3+ "a'gb3))

= P(_a3) + P(_b3)

We programmed each of the eight possible cases. We used failure rate for each component to be 0.0001/hour

and repair rate to be 0.1/hour whereever applicable in a 10 hours/phase mission. The results for eight cases are

shown in Table 3. Here in phase name "A" means AND phase and "0" means OR phase. Then, we assumed

that the failure rate for the component under repair is small, i.e., 0.00001/hour and recomputed all the eight

cases. These results are in Table 4. One can notice the difference in unreliability in the two cases. We are not

showing the results when we ignore the repairs altogether but, we noticed that the difference is significant in the

first case and relatively less in the second case.
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Table 3: Unreliability for eight cases with same failure rates

Case

AAA

OAA

AOA

OOA

AAO

OAO

AO0

000

EP1 BP2 EP2 BP3 EP3

9.99000583e-07 1.62990993e-06 4.25556226e-06 5.88170181e-06 9.49979360e-06

1.99800133e-03 1.99800133_03 1.99962799e-03 2.00065528e-03 2.00390329e-03

9.99000583e-07 1.63072502e-03 3.62546817e-03 3.62546817e-03 3.62745761e-03

1.99800133_03 2.62859528e-03 4.62134468e-03 4.62134468e-03 4.62296705e-03

9.99000583e-07 1.62990993e-06 4.25556226e-06 2.62891027e-03 4.62165904e-03

1.99800133e-03 1.99800133e-03 1.99962799e-03 4.62239334e-03 6.24453356e-03

9,99000583e-07 1.63072502e-03 3.62546817e-03 4.62103010e-03 6.60979861e-03

1,99800133e-03 2.62859528e-03 4.62134468e-03 5.25028105e-03 7.23779231e-03

Table 4: Unreliability for eight cases with low failure rates for components while under repair

Case

AAA

OAA

AOA

OOA

AAO

OAO

AO0

000

EP1 BP2 EP2 BP3 EP3

9.99000583e-07 1.06211526e-06 3.12110793e-06 3.57805367e-06 6.06492674e-06

1.99800133e-03 1.99800133e-03 1.99906133e-03 1.99912829e-03 2.00124603e-03

9.99000583e-07 1.06264640_03 3.05852457e-03 3.05852457e-03 3.05994942e-03

1.99800133e-03 2.06108445e-03 4.05496774e-03 4.05496774e-03 4.05602555e-03

9.99000583e-07 1.06211526e-06 3.12110793e-06 1.49368754e-03 3.48870448e-03

1.99800133_03 1.99800133e-03 1.99906133e-03 3.48887187e-03 5.11330514e-03

9.99000583e-07 1.06264640_03 3.05852457_03 3.48807495e-03 5.47910711e-03

1.99800133e-03 2.06108445e-03 4.05496774e-03 4.11792084e-03 6.10769456e-03

Table 5: Unreliability for "all is well if end is well" case

Case

o_37N

-tOoN

EP1 BP2 EP2 BP3 EP3

1.89437172e-03 1.89437172e-03 2.52542938e-03 2.52542938e-03 3.38726223e-03

2.99550450e-03 2.99550450e-03 3.99300567e-03 3.99300567e-03 5.97905190e-03

2.52263933e-10 6.32255388_04 8.64817157_04 2.58997399_03 3.39046756e-03

9.98501249e-10 1.00049817e-03 2.00198537e-03 5.98203595e-03 8.95962123e-03
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Example 3. In our lastexample,weprogrammedthethirdcasewherethethreephasesarec_= OR, /3 =

OR - AND. and _ = OR as shown in Figure 3. We ran four cases for this example. These had two orders c_/37

and 7_flc_ and in each case there is repair on all components in all phases (R) or no repair on any component (N).

The phases are each of l0 hours durations. The failure rates for each component in each phase is 0.0001/hour.

The repair rates for each component when applicable is 0.1/hour. The results are shown in Table 5. Notice two

things. Once ignoring repairs have significant impact on unreliability due to repairs, in particular for the system

where the success criteria is more stringent during the later phases. With repairs, the unreliability can be almost

maintained at the same levels as is the case in the first and the third line.

6 Managing Phased-Mission Systems with Repairs Using RBDs

It. should be mentioned that this analysis can also be carried out using RBDs. Recall that in [5] each component

X model in phase p is replaced by a series of events XlX2...xp. In case of repairs, each component model will

be a parallel series model derived out of component up/fail tree as shown in Figure 4. There will be up to

2p-I parallel branches. Each branch represents one unique path from root to one of the leaf U node in the tree.

Notice that. if a particular phase does not have repair on a particular component, then the tree does not have

any expansion from that the intermediate D node in the tree. The rest of the analysis remains the same.

7 Conclusions

We have presented a technique to analyze phased-mission systems including component repairs whose phase

success criterias can be expressed using fault trees. This technique yields accurate results and is simple in

concept and computation. For this purpose, we enhanced phase algebra to include the effects of phases that

allows us to efficiently compute the probabilities of all possible combinations contributing to failure in phased-

mission systems during individual phases. This technique is very useful for a large class of systems where during

the long mission times the system includes repairs but system operational behavior can be described using fault

trees. Several examples have been included to show the effects of repairs and how to manage it computationally.

Currently we are incorporating these techniques in reliability analysis tools.
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